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An Overview of Voice Conversion Systems

Seyed Hamidreza Mohammadi and Alexander Kain
Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA

Abstract

Voice transformation (VT) aims to change one or more aspects of a speech signal while preserving linguistic information.
A subset of VT, Voice conversion (VC) specifically aims to change a source speaker’s speech in such a way that the
generated output is perceived as a sentence uttered by a target speaker. Despite many years of research, VC systems still
exhibit deficiencies in accurately mimicking a target speaker spectrally and prosodically, and simultaneously maintaining
high speech quality. In this work we provide an overview of real-world applications, extensively study existing systems
proposed in the literature, and discuss remaining challenges.
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1. Introduction

Voice transformation refers to the various modifications
one may apply to human-produced speech [1]; specifically,
VT aims to modify one or more aspects of the speech signal
while retaining its linguistic information. Voice conversion
is a special type of VT whose goal is to modify a speech sig-
nal uttered by a source speaker to sound as if it was uttered
by a target speaker, while keeping the linguistic contents un-
changed [2]. In other words, VC modifies speaker-dependent
characteristics of the speech signal, such as spectral and
prosodic aspects, in order to modify the perceived speaker
identity while keeping the speaker-independent information
(linguistic contents) the same. There is also another class
of voice transformations called voice morphing where the
voices of two speakers are blended to form a virtual third
speaker [3]. VT approaches can be applied to solve related
problems, such as changing one emotion into another [4],
improving the intelligibility of speech [5], or changing whis-
per/murmur into speech without modifying speaker identity
and linguistic content. For more information regarding ap-
plications, please see Section 8. In this work, we will focus
on studies pertaining to VC systems, since the majority of
important milestones of the VT field have been studied in
the VC literature.

An overview of a typical VC system is presented in Fig-
ure 1 [6]. In the training phase, the VC system is presented
with a set of utterances recorded from the source and target
speakers (the training utterances). The speech analysis and
mapping feature computation steps encode the speech wave-
form signal into a representation that allows modification of
speech properties. Source and target speakers’ speech seg-
ments are aligned (with respect to time) such that segments
with similar phonetic content are associated with each other.
The mapping or conversion function is trained on these
aligned mapping features. In the conversion phase, after
computing the mapping features from a new source speaker

utterance, the features are converted using the trained con-
version function. The speech features are computed from
the converted features which are then used to synthesize the
converted utterance waveform.

There are various ways to categorize VC methods. One
factor is whether they require parallel or non-parallel record-
ings during their training phase. Parallel recordings are
defined as utterances that have the same linguistic con-
tent, and only vary in the aspect that needs to be mapped
(speaker identity, in the VC case) [7]. A second factor
is whether they are text-dependent or text-independent [8].
Text-dependent approaches require word or phonetic tran-
scriptions along with the recordings. These approaches may
require parallel sentences recorded from both source and tar-
get speakers. For text-independent approaches, there is no
transcription available, therefore these approaches require
finding speech segments with similar content before build-
ing a conversion function [9]. A third factor is based on the
language that source and target speakers speak. Language-
independent or cross-language VC assumes that source and
target speakers speak in different languages [10, 11]. Be-
cause of the differences in languages, some phonetic classes
may not correspond to each other, resulting in problems
during mapping. To solve this issue, a combination of non-
parallel, text-independent approaches can been used. An-
other important factor for VC categorization is the amount
of the training data that is available. Typically, for larger
training data, conversion functions that memorize better are
more effective; however, for smaller training data, techniques
that generalize better are more preferable.

Some investigators have studied the contributions of
several speech features such as of pitch, formant frequen-
cies, spectral envelope and others to speaker individual-
ity [12, 13]. The three most relevant factors were found
to be average spectrum, formants, and the average pitch
level. As a result, the majority of VC systems aim to mod-
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ify short-time spectral envelopes and the pitch value. In this
study, we present the spectral and prosodic mappings that
have been proposed for VC in Sections 5 and 6, respectively.
We also review prominent approaches for evaluating the per-
formance of VC systems in Section 7. We then review the
different applications that use VC and VT methods in Sec-
tion 8. Finally, we conclude with reviewing the remaining
VC and VT challenges and future directions.
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Figure 1: Training and conversion phases of a typical VC system

2. Speech Features

As shown in Figure 1, in order to perform voice conver-
sion, analysis/synthesis of the speech signal is necessary.
The goal is to extract speech features that allow a good
degree of modification with respect to the acoustic prop-
erties of speech. Most techniques work on the frame-level
(or frame-by-frame), defined as short time segments (~20
milliseconds), in which the length of the frame is chosen so
that it satisfies the assumption that the speech signal is sta-
tionary (the statistical parameters of the signal over time are
fixed) in that frame. The frame can be fixed length through-
out the analysis or it can be have a length relative to the
pitch periods of the signal (pitch-synchronous analysis).
Speech models can be broadly categorized into source-filter
models and signal-based models. In source-filter models,

speech is modeled as a combination of a excitation or source
signal (representing the vocal cords, not to be confused with
the source speaker), and a spectral envelope filter (repre-
senting the vocal tract). The model assumes that speech is
produced by passing an excitation signal (related to vocal
cord movements and frication noise) through the vocal tract
(represented by a filter), or, in other words, filtering the ex-
citation signal with the vocal tract filter. The excitation sig-
nal and filter are assumed to be independent of each other.
Two prominent filter models are commonly used: all-pole
and log-spectrum filters. Linear predictive coding (LPC)
is an implementation of all-pole models, and mel-log spec-
trum approximation (MLSA) is an implementation of log-
spectrum filters [14]. SPTK is a publicly available toolkit
that provides linear predictive and MLSA analysis/synthe-
sis [15]. When estimating the spectral envelope, the pitch
periods present in the speech signal can show up as har-
monics (sharp peaks and valleys) in the spectral envelope.
This phenomenon can be problematic when performing any
further modifications to the spectrum, since the presence of
pitch information in the spectrum would fail the assump-
tion of the independence of source signal and filter. In an
attempt to alleviate the interference between signal peri-
odicity and the spectrum, STRAIGHT proposes a pitch-
adaptive time-frequency spectral smoothing [16], which was
later extended to TANDEM-STRAIGHT to provide a uni-
fied computation of spectrum, fundamental frequency, and
aperiodicity [17]. The advantage of a smooth spectrum is
that it provides a representation that is easier to model and
manipulate. CheapTrick and WORLD propose some im-
provements over TANDEM-STRAIGHT [18, 19]. The exci-
tation signal can be modeled in various ways. A simple im-
plementation is the pulse/noise model in which the voiced
speech segments are modeled using a periodic pulse and the
unvoiced speech segments are modeled using noise. More
complex excitation signal models such as glottal excitation
models [20, 21, 22, 23, 24], residual signals [25, 26, 27, 28, 29],
mixed excitation [30, 31], and band aperiodicity [32, 33] have
been used.

Signal-based analysis/synthesis approaches model the
speech signal by not making any restrictive assumptions
(such as the independence of source signal and filter); hence
they usually have higher quality. The downside is that they
are less flexible for modification. A simple analysis/synthesis
technique is pitch-synchronous overlap-add (PSOLA) [34].
PSOLA uses varying frame sizes related to the fundamental
frequency (F0) to create short frames of the signal, keep-
ing the signal in time-domain. PSOLA allows for prosodic
transformations of pitch and duration. Linear Predictive
PSOLA adds the ability to perform simple vocal tract mod-
ifications [35]. Harmonic plus noise models (HNM) assume
that the speech signal can be decomposed into harmonics
(sinusoids with frequencies relevant to pitch). HNMs gen-
erate high quality speech but they are not as flexible as
source-filter models for modification, mainly because of the
difficulty of dealing with phase [36]. AHOCODER is a pub-
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licly available toolkit that provides high-quality HNM syn-
thesis [37]. Speech signals can also be represented as a sum
of non-stationary modulated sinusoids; this has shown to
significantly improve the synthesized speech quality in low-
resource settings [38].

3. Mapping Features

One might directly use speech analysis output features for
training the mapping function. More commonly, the speech
features are further processed to allow better representation
of speech. As shown in Figure 1, following the speech analy-
sis step, the mapping features are computed from the speech
features. The aim is to obtain representations that allow
for more effective manipulation of the acoustic properties of
speech.

3.1. Local Features
Local features represent speech in short-time segments. The
following features are commonly utilized to represent local
spectral features:

Spectral envelope: the logarithm of the magnitude spec-
trum can be used directly for representing the spec-
trum. Because of the high dimensionality of these
parameters, more constrained VC mapping functions
are commonly used [35, 10, 39]. The frequency scale
can be warped to Mel- or Bark-scale, which are fre-
quency scales that emphasize perceptually relevant in-
formation. Recently, due to the prevalence of neu-
ral network techniques and their ability to handle
high-dimensional data, these features are becoming
more popular. Spectral parameters have high inter-
correlation.

Cepstrum: a spectral envelope can be represented in the
cepstral domain using a finite number of coefficients
computed by the Discrete Cosine Transform of the
log-spectrum. Commonly, mel-cepstrum is used in the
literature [40]. Mel-cepstrum (MCEP) is a more com-
monly used variation. Cepstral parameters have low
inter-correlation.

Line spectral frequencies (LSF): manipulating LPC
coefficients may cause unstable filters, which is the
reason that usually LSF coefficients are used for mod-
ification. LSFs are more related to frequency (and
formant structure), and they also have better quanti-
zation and interpolation properties [41]. These prop-
erties make them more appropriate when statistical
methods are used [42]. LSF parameters have high
inter-correlation. These parameters are also known as
Line spectral pairs (LSP).

Formants: formant frequencies and bandwidths can be
used to represent a simplified version of the spec-
trum [43, 44, 45, 46]. They represent spectral features

which are of high importance to speaker identity; how-
ever, because of their compact nature, they can result
in low speech quality during more complex acoustic
events.

The local pitch features are typically represented by F0,
or alternatively by logarithm of F0 which is considered to
be more perceptually relevant.

3.2. Contextual Features
Most of the mapping functions assume frame-by-frame

processing. Human speech is highly dynamic over longer
segments and the frame-by-frame assumption restricts the
modeling power of the mapping function. Ideally, speech
segments with similar static features but different dynamic
features should not be treated the same. Techniques that
add contextual information to the features are proposed: ap-
pending multiple frames, appending delta (and delta-delta)
features, and event-based encodings. Appending multiple
frames forms a new super-vector feature [47, 48, 49] on
which the mapping function is trained. This new multi-
frame feature would allow the mapping function to cap-
ture the transitions within the short (but longer than a
single frame) segments, since the number of neighboring
frames that are appended is chosen in a way that meaning-
ful transitional information is present within the segment.
In another approach, appending delta and delta-delta fea-
tures has been proposed [50]; this allows the mapping func-
tion to also consider the dynamic information in the train-
ing phase [51]. Moreover, during computing speech fea-
tures from the converted features, this dynamic informa-
tion can be utilized to generate a local feature trajectory
that considers both static and dynamic information [52].
Event-based approaches decompose local feature sequence
into event targets and event transitions to effectively model
the speech transition. Temporal decomposition (TD) de-
composes local feature sequence into event targets and event
functions [53, 54, 55]. The event functions connect the event
targets through time. Similarly, Asynchronous interpolation
model (AIM) proposes to encode local feature sequence by a
set of basis vectors and connection weights [56]. The connec-
tion weights connect the basis vectors through time to model
feature transition. The main difficulty with the event-based
approaches is to correctly identify event locations in the se-
quence.

Analogous to spectral parameterization, contextual in-
formation can be added to the local pitch features as well.
More meaningful speech units such as syllables can be con-
sidered to encode contextual information. We present pitch
parametrization and mapping approaches in more detail in
Section 6.

In addition to these techniques that explicitly encode
the speech dynamics, some mapping functions implicitly
model dynamics from a local feature sequence. Examples
of these implicit dynamic models are hidden Markov mod-
els (HMMs) and recurrent neural networks (RNNs). These
models typically encompass a concept of state. The state
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that the model is currently in is determined by the previ-
ously seen samples in the sequence, hence allowing the model
to capture context. We will mention these approaches at
the end of their relevant spectral mapping subsections in
Section 5.

4. Time-alignment

As shown in Figure 1, VC techniques commonly utilize par-
allel source-target feature vectors for training the mapping
function between source and target features. The most com-
mon approach uses recordings of a set of parallel sentences
(sentences including the same linguistic contents) from both
source and target speakers. However, the source and target
speakers are likely to have different-length recordings, and
have dissimilar phoneme durations within the utterance as
well. Therefore, a time-alignment approach must be used
to address the temporal differences. Manual or automatic
phoneme transcriptions can be utilized for time alignment.
Most often, a dynamic time warping (DTW) algorithm is
used to compute the best time alignment between each ut-
terance pair [57, 58], or within each phoneme pair. The final
product of this step is a pair of source and target feature se-
quences of equal length. The DTW alignment strategy as-
sumes that the same phonemes of the speakers have similar
features (when using a particular distance measure). This
assumption however is not always true and might result in
sub-optimal alignments, since the speech features are typi-
cally not speaker-independent. For improving the alignment
output, one can iteratively perform the alignment between
the target features and the converted features (instead of
source features), followed by training and conversion, until
a convergence condition is satisfied. There are various meth-
ods that perform time alignment in different conditions, de-
pending on the availability of parallel recordings, the avail-
ability of phonetic transcription, the language of the record-
ings, and whether the alignment is implicit in training or is
performed separately. An overview of some time-alignment
methods is given in Table 1.
More complicated approaches are required for non-parallel

alignment. One set of alignment methods use transcribed,
non-parallel recordings for training purposes. For align-
ment, a unit-selection text-to-speech (TTS) system can be
used to synthesize the same sentences for both source and
target speakers [62]. The resulting speech is completely
aligned, since the duration of the phonemes can be specified
to the TTS system beforehand [63]. These approaches usu-
ally require a relatively large number of training utterances
and they are usually more suited for adapting an already
trained parametric TTS system to new speakers/styles.
These approaches, however, are text-dependent. For text-
independent, non-parallel alignment, a unit-selection ap-
proach that selects units based on input source features is
proposed to select the best-matching source-target feature
pairs [70]. The INCA algorithm [68, 6] iteratively finds the
best feature pairs between the converted source and the tar-
get utterances using a nearest neighbors algorithm, and then

trains the conversion on those pairs. This process is iterated
until the converted source converges and stops changing sig-
nificantly.

Researchers have studied the impact of frame align-
ment on VC performance, specifically the situation where
one frame aligns with multiple other frames (hence mak-
ing the source-target feature relationship not one-to-one),
and approaches to reduce the resulting effects were pro-
posed [74, 75, 76, 77]; notably, some studies suggested to
filter out the source-target training pairs that are unreliable,
based on a confidence measure [78, 79].

5. Spectral modeling

This section discusses the mappings that are used for VC
task to learn the associations between the spectral mapping
features. We assume that the mapping features are aligned
using one of the techniques described in Section 4. In addi-
tion, we assume that the training source and target speaker
features are sequences of length N represented by Xtrain =
[xtrain

1 , . . . ,xtrain
N ] and Ytrain = [ytrain

1 , . . . ,ytrain
N ], respec-

tively, where each element is a D-dimensional vector x> =
(x1, . . . , xD). Each element of the sequence represents the
feature computed in a certain frame, where the features can
be any of the mapping features described in Section 3. The
goal is to build a feature mapping function F(X) that maps
the source feature sequence to be more similar the target
speaker feature sequence, as shown in Equation 1. At con-
version time, an unseen source feature X = [x1, . . . ,xNtest ]
of length N test will be passed to the function in order to
predict target features,

F(X) = Ŷ = [ŷ1, . . . , ŷNtest ] (1)

Traditionally we assume that the mappings are performed
frame-by-frame, meaning that each frame is mapped inde-
pendent of other frames,

ŷ = F(x) (2)

however, more recent models consider more context to go
beyond frame-by-frame mapping, which are mentioned at
the end of their relevant subsections.

In Figure 2, we devise a toy example to show the per-
formance of some conversion techniques. We utilize 40 sen-
tences from a male (source) and a female (target) speaker
from the Voice Conversion Challenge corpus (refer to Sec-
tion 7). We extract 24th-order MCEP features and use prin-
cipal component analysis (PCA) on both speaker’s data to
reduce the dimensionality to two for easier two-dimensional
visualization. The yellow and green dots represent source
and target training features. The input data, represented
as magenta, is a grid over the source data distribution in
the top row, and the feature sequence of a word uttered by
the source speaker (excluded from the training data) in the
bottom row. The original target and converted features are
represented as blue and red, respectively.
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method parallel recording phonetic transcription cross-language implicit in training

DTW [57] yes no no no
DTW including phonetics [58] yes yes no no

Forced alignment [59, 60] yes forced alignment no no
Time Sequence Matching [61] yes no no yes

TTS with same duration [62, 63] no yes no no
ASR-TTS with same duration [64, 65] no ASR no no

Model Alignment [66] no no yes yes
Unit-selection alignment [59, 67, 68, 69] no no yes no

Iterative (INCA) [68, 6] no no yes no
Unit-selection VC [70, 71] no no yes yes
Model Adaptation [72, 73] no no no yes

Table 1: Overview of time-alignment methods for VC

5.1. Codebook mapping
Vector quantization (VQ) can be used to reduce the num-
ber of source-target pairs in an optimized way [57]. This
approach creates M code vectors based on hard clustering
using vector quantization on source and target features sep-
arately. These code vectors are represented as cx

m and cy
m for

source and target speakers, for m = [1, . . . ,M ], respectively.
At conversion time, the closest centroid vector of the source
codebook is found and the corresponding target codebook
is selected

FVQ(x) = cy
m, (3)

where m = argη=[1,M ] min d(cx
η ,x). The VQ approach is

compact and covers the acoustic space appropriately since
a clustering approach is used to determine the codebook.
However, this simple approach still has the disadvantage
of generating discontinuous feature sequences. This phe-
nomenon can be solved by using a large M but this requires
a large amount of parallel-sentence utterances. The quanti-
zation error can be reduced by using a fuzzy VQ, which uses
soft clustering [80, 81, 78]. For an incoming new source map-
ping feature, a continuous weight wx

m is computed for each
codebook based on a weight function. The mapped feature
is calculated as a weighted sum of the centroid vectors

Ffuzzy VQ(x) =
M∑

m=1

wx
mcy

m, (4)

where wx
m = weight(cx

m,xnew). This weight function can
be computed using various methods, including Euclidian dis-
tance [80], phonetic information [82], exponential decay [83],
vector field smoothing [84], and statistical approaches [85].
Simple VQ is a special case of fuzzy-VQ in which only one
of the vectors is assigned the weight value of one, and the
rest have zero contribution.

Alternatively, to allow the model to capture more vari-
ability and reduce quantization error, a difference vector
between the source and target centroids can be stored as
codebook (VQ-DIFF) and added to the incoming mapping
feature [86]

FVQ-DIFF(x) = x + (cy
m − cx

m). (5)

Similar to fuzzy-VQ, a soft-clustering extension can be ap-
plied. For associating the source and target codebooks vec-
tors, the joint-density (JD) can be modeled, in which the
source and target vectors are first stacked and then the joint
codebook vectors are estimated using the clustering algo-
rithm. As a result, the computed source-target codebook
vectors will be associated together. In Figures 2b and 2c
JDVQ and JDVQ-DIFF conversions are applied to the toy
example data. As can be seen in the figure, the JDVQ-
DIFF is able to generate samples that were not present in
the target training data, however, JDVQ can not make this
extrapolation. JDVQ exhibits high quantization error. Both
JDVQ and JDVQ-DIFF are prone to generating discontin-
uous feature sequences.

5.2. Mixture of Linear Mappings

Valbret et al. [35] proposed to use linear multivariate re-
gression (LMR) for each code vector. In this approach, the
linear transformation is calculated based on a hard cluster-
ing of the source speaker space

FLMR(x) = Amx + bm, (6)

where m = argη=[1,M ] min d(cx
η ,x), and Am and bm are re-

gression parameters. This method, however, suffers from
discontinuities in the output when the clusters change be-
tween neighboring frames. To solve this issue, an idea sim-
ilar to fuzzy-VQ is proposed, but for linear regression. The
previous equation then changes to

Fweighted LMR(x) =
M∑

m=1

wx
m(Amx + bm), (7)

where wx
m = weight(cx

m,x). Various approaches have been
proposed to estimate the parameters of the mapping func-
tion. Kain and Macon [58] proposed to estimate the joint
density of the source-target mapping feature vectors in
an approach called joint-density Gaussian mixture model
(JDGMM). A joint feature vector zt = [x>

t ,y>
t ]

> is created,
and a Gaussian mixture model (GMM) is fit to the joint
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a) Source Features b) JDVQ M=16 c) JDVQ-DIFF M=16 d) JDGMM M=8 diagonal covariance e) JDGMM M=4 full covariance f) ANN hidden layer size = 16

Figure 2: A toy example comparing JDVQ, JDVQ-DIFF, JDGMM, and ANN. The x- and y-axis are first and second dimensions of PCA,
respectively. Color codes for source, target, input, original target, and converted samples are represented as yellow, green, magenta, blue, and
red, respectively. The top row shows an example with a grid as input and the bottom row shows an example with a real speech trajectory as
input.

data. The parameters of the weighted linear mapping are
estimated as

Am = Σxy
m Σxx−1

m ,bm = µy
m − Amµx

m, wx
m = P (m|xnew),

(8)
where Σxy

m , Σxx
m , µx

m, µy
m, and P (m|x) are the mth training

cross-covariance matrix, source covariance matrix, source
mean vector, target mean vector, and conditional probabil-
ity of cluster m given input x, respectively. Stylianou et al.
[87] proposed a similar formulation as Equation 7, however
the GMM mixture components are estimated on source fea-
ture vectors only, rather than the joint feature vectors. Ad-
ditionally, instead of computing the cross-covariance matrix
and the target means directly from the joint data, they are
computed by solving a matrix equations to minimize the
least squares via

Am = ΓmΣxx−1
m ,bm = vm − Amµx

m, wx
m = P (m|xnew),

(9)
where Γ and v are the mapping function parameters which
are estimated by solving a least squares optimization prob-
lem. In the case of JDGMM, Γ = Σxy

m and v = µy
m, which

are computed from the joint distribution. JDGMM has the
advantage of considering both the source and the target
space during training, giving opportunity for more judicious
allocation of individual components. Furthermore, the pa-
rameters of the conversion function can be directly estimated
from the joint GMM and thus a potentially very large ma-
trix inversion problem can be avoided. The derivation of the
mapping function parameters are derived similar to Equa-
tion 8. GMM approaches are compared in [88]. In Figure 2d
and 2e, the JDGMM conversion for M = 8 with diagonal
covariance and M = 4 with full covariance matrices are ap-

plied to the toy example data, respectively. Both approaches
result in smoother trajectories compared to JDVQ methods.
The full covariance matrix seems to capture the distribution
of the target speaker better.

One major disadvantage of GMMs is the requirement
of computing covariance matrices [88]. If we assume a full
covariance matrix, the number of parameters is on the or-
der of m multiplied by the square of the dimension of the
features. If we don’t have sufficient data (which is usually
the case in VC), the estimation might result in over-fitting.
To overcome this issue, diagonal covariance matrices are
commonly used in the literature. Due to the assumption
of independence between the individual vector components,
diagonal matrices might not be appropriate for some map-
ping features such as LSFs or the raw spectrum. To pro-
pose a middle ground between diagonal and full covariance
matrices, some studies use a mixture of factor analyzers,
which assumes that the covariance structure of the high-
dimensional data can be represented using a small number
of latent variables [89]. There also exists an extension of
this approach that utilizes non-parallel a priori data [90].
Another study proposes to use partial least squares (PLS)
regression in the transformation [91]. PLS is a technique
that combines principles from principal component analysis
(PCA) and multivariate regression (MLR), and is most use-
ful in cases where the feature dimensionality of xtrain

t and
ytrain
t is high and the features exhibit multicollinearity. The

underlying assumption of PLS is that the observed variable
xtrain
t is generated by a small number of latent variables rt

which explain most of the variation in the target ytrain
t , in

other words xtrain
t = Qrt+ex

t and ytrain
t = Prt+ey

t , where
Q and P are speaker specific transformation matrices and
ex
t and ey

t are residual terms. Solving Q and P, and ex-
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tending the model to handle multiple weighted regressions,
result in the computation of regression parameters Am, bm,
and wx

m, as detailed in [91]. The approach is later extended
to use kernels and dynamic information, in order to capture
non-linear relationships and time-dependencies [32].

Various other approaches to estimate regression param-
eters have been proposed. In the Bag of Gaussian model
(BGM) [92], two types of distributions are present. The
basic distributions are GMMs, but the approach also uses
some complex distributions to handle the samples that are
far from the center of their distribution. Other approaches
based on Radial Basis Functions (RBFs) [93, 94] and Sup-
port vector regression (SVR) [95, 96] have also been pro-
posed; these use non-linear kernels (such as Gaussian or
polynomial) to transform the source mapping features to
a high-dimensional space, followed by one linear mapping
in that space. Finally, some approaches are physically moti-
vated mappings [97, 98] and local linear transformations [99].

One effect of over-fitting, mentioned earlier, is the pres-
ence of discontinuity in the generated features. For exam-
ple, if the number of parameters is high, the converted fea-
ture sequence might be discontinuous. For solving this phe-
nomenon, post-filtering of the posterior probabilities [100]
or the generated features themselves [52, 91] has been pro-
posed. Another known effect of GMM-based mappings is
generating speech with a muffled quality. This is due to
averaging features that are not fully interpolable, which re-
sults in wide formant bandwidths in the converted spectra.
For example, LSF vectors can use different vector compo-
nents to track the same formant, and thus averaging across
such vectors produces vectors that do not represent realistic
speech. This problem is also known as over-smoothing, since
the converted spectral envelopes are typically smoothened
to a degree where important spectral details become lost.
The problem can be seen in Figure 2c where the predicted
samples fall well within the probability distribution of the
target features and fail to move to the edges of the distri-
bution, thus failing to capture the variability of the target
features. To solve this issue, some studies have proposed
to post-process the converted features. A selection of post-
processing techniques is given in Table 2.

Another framework for solving the VC problem is to
view it as a noisy channel model [110]. In this framework,
the output is computed from the conditional maximum-
likelihood Fnoisy-channel(x) = argmaxyP (y|x), where the
conditional probability is defined using Bayes’ rule P (y|x) =
P (x|y)P (y). The conditional probability P (x|y) represents
the channel properties and is trained on the parallel source-
target data, whereas P (y) represents the target properties
and is trained on the non-parallel target speaker data. Fi-
nally, the problem reduces to decoding of the target features
given the observed features, the channel properties, and the
target properties. In another framework, the idea of sep-
arating style from content is explored using bilinear mod-
els [111, 112]. For the VC task, style is the speaker identity
and content is the linguistic content of the sentence. In this

method, two linear mappings are performed, one for style
and one for content. During conversion, the speaker iden-
tity information of the input utterance is replaced with the
target speaker identity information computed during train-
ing.

In order to better model dynamics of speech, various
approaches such as HMMs have been proposed [113, 51,
114, 115]. These approaches consider some context when
decoding the HMM states but the final conversion is usually
performed frame-by-frame. Another approach is to append
dynamic features (delta and delta-delta, i. e. velocity and
acceleration, respectively [50]) to the static features [51], as
described in Section 3. A very prominent approach called
maximum likelihood parameter generation (MLPG) [116]
has been used for generating feature trajectory using dy-
namic features [52]. MLPG can be used as a post-processing
step of a JDGMM mapping. It generates a sequence with
maximum likelihood criterion given the static features, the
dynamic features, and the variance of the features. This ap-
proach is usually coupled with GV to increase the variance
of the generated feature sequence. Ideally, MLPG needs to
consider the entire trajectory of an utterance to generate the
target feature sequence. This property is not desirable for
real-time applications. Low-delay parameter generation al-
gorithms without GV [117] and with GV [118] have also been
proposed. Recently, considering the modulation spectrum
of the converted feature trajectory (as a feature correlated
with over-smoothing) has been proposed, which resulted in
significant quality improvements [119]. Incorporating pa-
rameter generation into the training phase itself has also
been studied [120, 121].

5.3. Neural network mapping
Another group of VC mapping approaches use artificial neu-
ral networks (ANNs). ANNs consist of multiple layers,
each performing a (usually non-linear) mapping of the type
y = f(Wx + b) where f(·) is called the activation function
that can be implemented as a sigmoid, tangent hyperbolic,
rectified linear units, or linear function. A shallow (two-
layered) ANN mapping can be defined as

FANN (x) = f2(W2f1(W1x + b1) + b2)), (10)

where Wi, bi, and fi represent the weight, bias and acti-
vation function for the ith layer, respectively. ANNs with
more than two layers are typically called deep neural net-
works (DNNs) in the literature. The input and output size
are usually fixed depending on the application. (For VC, the
input and output size are the source and target mapping fea-
ture dimensions.) However, the size of the middle layer and
activation function are chosen depending on the experiment
and data distributions. The first layer activation function
is almost always non-linear and the activation function of
the last layer is linear or non-linear, depending on the de-
sign. If the last layer is linear, the ANN approach can be
viewed as an LMR approach, with the difference that the
linear regression is applied on a data space that is mapped
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Method Description

Global Variance(GV) [101, 102, 103] Adjusts the variance of generated features to match that of target’s

ML parameter generation [52] Maximizes the likelihood during parameter generation using dynamic features

MMI parameter generation [104] Maximizes the mutual information during parameter generation using dynamic features

Modulation Spectrum [105] Adjusts the spectral shape of the generated features
Monte Carlo [106] Minimizing the conversion error and the sequence smoothness together

L2-norm [107] Sharpens the formant peaks in spectrum

Error Compensation [108] Models error and compensate for it

Residual addition [109] Maps the envelope residual and adds it to the GMM-generated spectrum

Table 2: Post-processing techniques for reducing the over-smoothing

non-linearly from the mapping feature space, and not di-
rectly on the mapping features (similar to RBF and SVR).
The weights and biases can be estimated by minimizing an
objective function, such as mean squared error, perceptual
error [122], or sequence error [123].

ANNs are a very powerful tool, but the training and
network design is where most care needs to be exercised
since the training can easily get stuck in local minima. In
general, both GMMs and ANNs are universal approxima-
tors [124, 125]. The non-linearity in GMMs stems from
forming the posterior-probability-weighted sum of class-
based linear transformations. The non-linearity in ANNs
is due to non-linear activation functions. Laskar et al. [126]
compare ANN and GMM approaches in the VC framework
in more detail. In Figure 2f, the ANN conversion for a hid-
den layer of size 16 is applied to the toy example data. The
ANN trajectory is performing similar to JDGMM with full
covariance matrix, which is expected since both are univer-
sal approximators.

The very first attempt for using ANNs utilized for-
mant frequencies as mapping features [127], i. e. the source
speaker’s formant frequencies were transformed towards tar-
get speaker’s formant frequencies using a ANN followed by
a formant synthesizer. Later, Makki et al. [128] successfully
mapped a compact representation of speech features using
ANNs. A more typical approach used a three-layered ANN
to map mel-cepstral features directly [129].Various other
ANN architectures have been used for VC [130]: Feedfor-
ward architectures [129, 131, 132, 133, 134], restricted Boltz-
mann machines (RBMs) and their variations [135, 136, 137],
joint architectures [135, 49, 138], and recurrent architec-
tures [139, 140].

Traditionally, DNN weights are initialized randomly;
however, it has been shown in the literature that deep ar-
chitectures do not converge well due to a vanishing gradient
and the likelihood of being stuck in a local minimum solu-
tion [141]. A regularization technique is typically used to
solve this issue. One solution is pre-training the network.
DNN training converges faster and to a better-performing
solution if their initial parameter values are set via pre-
training instead of random initialization [142]. This espe-
cially important for the VC task since the amount of train-
ing data is typically smaller compared to other tasks such

as ASR or TTS. Stacked RBMs are used to build speaker-
dependent representations of cepstral features for source
and target speakers before DNN training [143, 144, 145].
Similarly, layer-wise generative pre-training using RBMs for
VC has been proposed [48, 146]. Mohammadi and Kain
[133] proposed a speaker-independent pre-training of the
DNN using multiple speakers other than source and tar-
get speakers using de-noising stacked autoencoders. This
approach is later extended to use speakers that sound sim-
ilar to source and target speakers to pre-train the DNN
using joint-autoencoders [49]. In a related study, using
multiple speakers as source for training the DNN was pro-
posed [147]. Alternatively, other regularization techniques
such as dropout [148] and using rectified linear units [149]
have shown to be successful.

For capturing more context, Xie et al. [123] proposed
a sequence error minimization instead of a frame error
minimization to train a neural network. The architecture
of RNNs allows the network to learn patterns over time.
They implicitly model temporal behavior by considering
the previous hidden layer state in addition to the current
frame [150, 139, 140, 151].

5.4. Dictionary mapping
One of the simplest mapping functions is a look-up table
that has source features as entry keys and target features
as entry values. For an incoming feature, the function will
look up to find the most similar key based on a distance
criterion, e. g. an objective distortion measure d(·) similar
to one described in Section 7.1. In other words, it will look
for the nearest neighbor of the incoming source feature and
select its corresponding entry value

Flookup(x) = ytrain
t , (11)

where t = argτ=[1,T ] min d(xtrain
τ ,x). A major concern is

that the similarity of the source feature does not necessar-
ily guarantee similarity in neighboring target features. This
phenomenon will cause discontinuities between the gener-
ated target parameter sequence. One approach to overcome
the discontinuity of the target feature sequence is to assign a
weight to all target feature vectors (computed based on the
new source feature vector), which will generate a smoother
feature sequence. This category of approaches is called
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exemplar-based VC in the literature [152, 153, 154, 155] and
the mapping function is given by

Fexemplar(x) =
T∑

t=1

wx
t ytrain

t , (12)

with wx
t = ω(xtrain

t ,x), where ω(·) can potentially be any
distortion measure. A generic objective distortion measure
might result in over-smoothing, since many frames may be
assigned non-zero weights and will thus be averaged (unless
the mapping features are completely interpolable). Com-
monly, non-negative matrix factorization (NMF) techniques
have been used to compute sparse weights. The goal of NMF
is to compute an activation matrix H which represents how
well we can reconstruct x by a non-negative weighted ad-
dition of all xtrain

t vectors, such that X = XtrainH. The
activation matrix H is calculated iteratively [152]. NMF
computes a non-negative weight for each entry in the table,
which results in the mapping function

FNMF(X) = YtrainH. (13)

This relatively sparse weighting over all vectors results in
smooth generated feature sequences while reducing over-
smoothing. This approach however has the disadvantage
of computational complexity, which might not be suitable
for some applications. To address this issue, computing
the activation matrix in a more compact dimension has
been proposed [152]. The NMF methods are also inherently
well-suited for noisy environments [156, 157, 158]. Several
other extensions of NMF approaches have been proposed,
such as mapping the activation matrix [159], many-to-many
VC [160], including contextual information [161, 152, 162],
and local linear embeddings [163].

Another approach to combat discontinuities in the gen-
erated features is to take the similarity of the target feature
sequence into consideration by using a unit-selection (US)
paradigm. US approaches make use of a target cost (similar
to a table look-up distortion measure) and a concatenation
cost (to ensure the neighboring target features are most sim-
ilar to each other). Since the units are frames, this method
is also referred to as frame-selection (FS). The goal is to
find be best sequence of indices of training target vectors
S = [s1, . . . , sN ] which minimizes the following cost func-
tion [164, 165, 166]:

FFS (X) = argS=[s1,...,sNtest ] min
∑Ntest

n=1 α · target(xsn ,xnew
n )+

(1− α) · concatenation(ysn ,ysn−1
)

(14)

where α is used for adjusting the tradeoff between fitting ac-
curacy and the spectral continuity criterion. Since there is
an exponential number of permutation of index sequences,
a dynamic programming approach such as Viterbi is used
to find the optimal target sequence. This can be used for
aligning frames before any other type of training, or directly
used as a mapping function.

The US/FS approach can be adjusted to create text-
independent, non-parallel VC systems [70, 71]. In this vari-
ation, a vector x̃cmp

n is compared to a target training vector
in the dictionary to compute the target cost

FUS (X) = argS=[s1,...,sNtest ] min =
∑Ntest

n=1 α · target(ysn , x̃cmp
n )+

(1− α) · concatenation(ysn ,ysn−1
)

(15)

where x̃cmp
n is either the input source vector (in the absence

of any parallel data) [70] or a naive conversion to target
(in the presence of real or artificial parallel data) [167]. As
mentioned in Section 4, these techniques can be used for
parallelizing the training data as well.

Combinations and variants of US/FS approaches com-
bined with other mapping approaches have been proposed,
such as: dictionary mapping [168], codebook mapping [113,
169], frequency warping [170, 171], GMM mapping [51],
segmental GMM [172], k-histogram [173], exemplar-based
VC [161], and grid-based approximation [162]. These ap-
proaches have some limitations, specifically they can gen-
erate discontinuous features. Helander et al. [174] studied
the coverage of speech features when using FS as a mapping
for VC, and concluded that a small number of training ut-
terances (which is typical in VC tasks) is not adequate for
representing the speaker space.

5.5. Frequency warping mappings
The estimation of linear regression parameters described in
Section 5.2 is typically unconstrained; this can lead to over-
fitting. There exist a class of constrained mapping methods
which are physically motivated [98]. One common moti-
vation is that two different speakers have different formant
frequencies and bandwidths, and different energies in each
frequency band. Thus, for conversion, a constrained map-
ping only allows manipulation of formant location/band-
widths and energy in certain frequency bands. This reduces
over-fitting, while allowing the use of high-dimensional map-
ping features, which is beneficial since vocoders that utilize
high-dimensional speech features (e. g. harmonic vocoders)
usually have higher speech quality compared to more com-
pact vocoders (e. g. LSF vocoders). The motivation behind
the frequency warping (FW) methods is that a mapping
of a source speaker spectrum to a target speaker spectrum
can be performed by warping the frequency axis, to adjust
the location and bandwidth of the formants, and applying
amplitude scaling, to adjust the energy in each frequency
bands [175, 176, 177]; this approach is more physically in-
terpretable than an unconstrained mapping. Although these
approaches can be implemented as constrained linear trans-
formations (for certain features, such as cepstral features),
we dedicate a separate chapter to them due to their slightly
different motivation.

In a first attempt, Valbret et al. [178] proposed to warp
the frequency axis based on pre-computed warping functions
between source and target, using log-spectral features. The
source speaker spectral tilt is subtracted before warping and
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the target speaker spectral tilt is added after warping. Some
studies directly model and manipulate formant frequencies
and bandwidths [43, 179, 180, 181] so that they match the
target formants, as shown in Figure 3. Maeda et al. [182]
proposed to cluster the acoustic space into different classes
(similar to VQ) and perform a non-linear frequency warp-
ing on the STRAIGHT spectrum for each class. Later, Sün-
dermann et al. [10] studied various vocal tract length nor-
malization (VTLN) approaches that were used in ASR to
perform VC, including piecewise linear, power, quadratic,
and bilinear VTLN functions. Erro et al. [183] extended
this VTLN approach to multiple classes and proposed an
iterative algorithm to estimate the VTLN parameters. Při-
bilová and Přibil [184] experimented with various linear and
non-linear warping functions, with application to TTS adap-
tation. Erro and Moreno [175] proposed weighted frequency
warping (WFW) to perform a piecewise linear frequency
warping in each mixture components of a GMM, weighted
by the posterior probability. It is worth noting that they
used a pitch-asynchronous harmonic model (a high-quality
vocoder) and performed phase manipulation to achieve high
quality speech. Toda et al. [185] proposed to convert the
source spectrum using a GMM and then warp the source
spectrum to be similar to the converted spectrum with the
aim of keeping the spectral details intact.

Other than the formant frequency locations, the average
energy of the spectral bands is also an important factor in
speaker individuality. Previously, this has been partly taken
care of by subtracting source spectral tilt before frequency
warping and adding the target spectral tilt. In an exten-
sion of WFW work, it was shown that in addition to fre-
quency warping, an energy correction filter is required to in-
crease the flexibility of the mapping function [176]. Tamura
et al. [186] proposed a simpler amplitude scaling by adding
a shift value to the converted vector. In another extensive
study, amplitude scaling in addition to frequency warping
was proposed to add more degrees of freedom to the map-
ping [187, 177].

So
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Figure 3: Piece-wise linear frequency warping function

Some frequency warping functions can be reformulated
as a weighted linear mapping approach [188]. The linear
mappings are usually constrained, so that the mapping is
less prone to over-fitting. However, the constraints will limit

the ability to mimic very different voices. Erro et al. [189]
studied this idea using bilinear warping function (similar
to the VTLN approach) and constrained amplitude scaling,
and extended it [190].

Numerous extensions of the FW approach have been pro-
posed, such as in combination with GMMs [191, 98, 39, 192],
dictionary-based methods [170, 171, 193], and maximizing
spectral correlation [194].

5.6. Adaptation techniques
In this section, we describe the techniques that are used
when only limited or non-parallel training data are avail-
able. These approaches typically utilize the mappings or
models learned from some pre-defined set of speakers to aid
the training of the conversion mapping. Most of these ap-
proaches use mixture of linear mappings, however, the ideas
could be generalized to other approaches such as neural net-
works.

Adaptation techniques perform mean adaptation on the
means of GMM mixture components that are trained on the
source speaker [100] to move the GMM means towards the
target speaker’s probability distribution. Mouchtaris et al.
[72] proposed an adaptation technique for non-parallel VC,
in which a JDGMM is trained on a pre-defined set of source
and target speakers that have parallel recordings. For build-
ing the mapping function using non-parallel recordings, the
means and covariances of the GMMs are adapted to the
new source and target speakers. In a neural network-based
approach, a semi-supervised learning approach is proposed
in which first speakers that sound similar to the source
and target speakers are used for training the network, and
then the pre-trained neural network is further trained using
the source and target speaker data [49]. In another study,
an adaptive RBM approach was proposed in which it is
assumed that features are produced from a model where
phonological information and speaker-related information
are defined explicitly. During conversion, the phonetic and
speaker information are separated and the speaker informa-
tion is replaced with that of the target’s [195].

Another scheme for voice conversion is to utilize the
conversions built on multiple pre-stored speakers (different
from the target speaker) to create the mapping function. A
first attempt called speaker interpolation generates the tar-
get features using a weighted linear addition (interpolation)
of multiple conversions towards multiple other pre-defined
target speakers, by minimizing the difference between the
target features and the converted features [196, 197]. The
interpolation coefficients are estimated using only one word
from the target speaker.

The eigenvoice VC (EVC) approach represents the joint
probability density similar to the conventional GMM, except
that the target means are defined as [198, 199]

µy
m = Gmw + gm (16)

where gm is the bias vector and the matrix Gm =
[g1

m, . . . ,gJ
m] consists of basis vectors gj

m for the mth mix-
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ture. The total number of basis vectors is J and the target
speaker identity is controlled with the J-dimensional weight
vector w = [w1, . . . , wJ ]>. For a given target speaker, a
weight is computed and assigned to each eigenvoice; the
weight represents the eigenvoice’s contribution to generating
features [198, 199]. In the traditional eigenvoice approach,
weights are estimated during training and are fixed during
conversion. For lowering the computational cost, a multistep
approach has been proposed [200]. For further improving
the robustness of this approach to the amount of adaptation
data, a maximum-a-posteriori adaptation approach has also
been proposed [201]. The eigenvoice approach has also been
extended to many-to-one VC, where the target speaker is
always the same but the source speaker can be an arbitrary
speaker with minimal adaptation data [202]. Finally, one-
to-many eigenvoice VC based on a tensor representation of
the space of all speakers has been proposed [203]. Many-to-
many conversion has also been proposed in which the goal
is to perform a conversion using an arbitrary source speaker
to an arbitrary target speaker with minimal parallel [204]
and non-parallel data [205].

5.7. Other mappings
Various other mapping approaches have been proposed. The
K-histogram approach is a non-parametric approach which
defines the mapping via the cumulative distribution func-
tion (CDF) of the source followed by an inverse CDF of the
target [173]

FK-Histogram(x) = CDF−1
y (CDFx(x)) (17)

A Gaussian processes (GP) approach has also beens pro-
posed [206, 207]. GPs are kernel-based, non-parametric ap-
proaches that can be viewed as distribution over functions,
which relieves the need to specify the parametric form be-
forehand. For example, it is possible to define how to de-
scribe the mean and covariance functions [206]. Another
non-parametric approach based on topological maps has
been proposed which estimates the joint distribution of the
spectral space of source and target speakers [208, 209]. The
topological map is a type of a neural network where each
node is topologically located on a 2D map in a grid-like
fashion. In the training step, the value of these nodes are
learned. For each node in the source speaker map, a corre-
sponding node in the target speaker map is computed. This
correspondence is used to map an incoming source vector to
a target vector. This approach has some similarities to the
VQ method.

6. Prosodic modeling

Most of the VC literature focuses on mapping spectral fea-
tures, despite the fact that prosodic aspects (pitch, dura-
tion, spectral balance, energy) are also important for speaker
identity [210, 211]. For modeling duration, a global speak-
ing rate adjustment is not sufficient since it has been ob-
served that phoneme durations differ somewhat arbitrarily

between source and target speakers [59]. Modeling duration
using decision trees [23] and duration-embedded HMMs has
been studied [63].

The most common method to transform pitch is to glob-
ally match the average and standard deviation of the pitch
contour. Pitch can be converted by mapping the log-scaled
F0 using a linear transformation

F̂ y
0 =

σy

σx
(F x

0 − µx) + µy (18)

where µ and σ represent mean and standard deviation of the
log-scaled F0 [212]. Several studies have looked into model-
ing F0 and spectral features jointly [213, 214, 215]; this has
shown improvements for both spectral and F0 conversions.
Conversely, predicting pitch values from the target speaker
spectrum using a GMM has also been studied [216].

When we use simple linear mapping techniques, such as
globally changing the speaking rate or adjusting the pitch
mean and variance, the supra-segmental information is not
modified effectively. Prosody modeling is a complex prob-
lem that depends on linguistic and semantic information.
As an example, the emphasis that speakers put on certain
speech units (such as words) does not necessarily have a
similar pattern for other speakers depending on the context
and high level information. In VC tasks, this high level in-
formation is typically not available. ASR can be used to au-
tomatically compute textual information, but the error that
it is likely to introduce may become a detrimental factor for
prosodic mapping performance. Pitch modeling for VC has
been studied on different acoustic/linguistic levels: frame-
level, syllable-level, and utterance-level. Moreover, various
pitch representations have been used, such as F0 contour,
the discrete cosine transform (DCT) of the F0 contour, the
Wavelet transformation of the F0 contour, and other com-
pact parameterizations of the F0 contour. In order to model
the dynamics of the pitch contour in frame-level representa-
tions, mapping F0 using multi-space probability distribution
(MSD) HMMs [218] and LSTM networks [33] have been pro-
posed. Syllable-level representations model the pitch move-
ments at the syllable level, which is a more meaningful rep-
resentation for modeling pitch events. The most prominent
pitch conversion approaches for VC are presented in Table 3.
Wu et al. [217] studied some of these approaches in more de-
tail.

7. Performance evaluation

When evaluating the performance of VC systems several as-
pects can be evaluated:

Speaker similarity: Answers the question of “How simi-
lar is the converted speech to the target?”. This is also
known as conversion accuracy or speaker individuality.

Speech quality: This describes the quality of the gener-
ated speech with respect to naturalness and audible
artifacts.
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Method level pitch representation other info mapping function

Mean and variance matching [212] frame-level F0 contour - linear
Predicting from spectrum [216] frame-level F0 contour spectrum weighted linear

Joint modeling with spectrum[213, 214, 215] frame-level F0 contour spectrum weighted linear
Histogram equalization [217] frame-level F0 contour - histogram equalization

MSD-HMM [218] frame-level F0 contour spectrum weighted linear
LSTM [33, 151] frame-level F0 contour spectrum LSTM

Syllable-based codebook [219] syllable-level F0 contour syllable boundary codebook mapping
Syllable-based MLLR [220] syllable-level F0 contour syllable boundary MLLR adaptation
Syllable-based CART [221] syllable-level DCT syllable boundary CART

Syllable-based weighted linear [222] syllable-level DCT syllable boundary weighted linear
Hierarchical modeling of F0 [223] utterance-level Wavelet transform [224] - KPLS [32]

Contour codebook + DTW [212, 225] utterance-level F0 contour - codebook mapping
Weighting contours [226, 225] utterance-level F0 contour - weighting codebooks
SHLF parametrization [227] utterance-level Patterson [228] - piecewise linear
OSV parametrization [229] utterance-level Offset, Slope and Variance - linear

Table 3: An overview of pitch mapping methods for VC

Speech intelligibility: Assesses the intelligibility of the
generated speech. This is a lesser-studied aspect in
the VC literature

In experimental voice conversion evaluations, a distinc-
tion is often made between intra-gender conversion (female-
to-female or male-to-male) and inter-gender conversion
(female-to-male or male-to-female).

A standard corpus for VC evaluation does not exist. Sev-
eral databases have been used for VC including TIMIT [230],
VOICES [42], CMU-Arctic [231], MOCHA [232], and the
MSRA mandarin corpus [27]. Very recently, the VC Chal-
lenge (VCC) 2016 prepared a standard dataset for a VC
task, which has the potential to become the standard for
VC studies [233]. The VCtools available in the Festvox
toolkit [234] can be used for implementing baseline VC tech-
niques such as GMM and MLPG/GV processing.

It has been shown that the performance of the system
depends on the selection of source speaker. Turk and Arslan
[235] has studied the problem of automatic source speaker
(“donor”) selection from a set of available speakers that
will result in the best quality output for a specific target
speaker’s voice. This problem is also studied by proposing
a selection measure [84, 236].

In the following subsections, we study the objective and
subjective measures used for evaluating VC performance.

7.1. Objective evaluation
For evaluating VC performance objectively, a parallel-
sentence corpus is required. First, the conversion and the
associated target utterances have to be time-aligned. The
difference between the converted speech and target can then
be calculated using various general spectral difference mea-
sures. An example is the log-spectral distortion (in dB),
which can be computed on unwarped, or warped (using the
mel or Bark scale) spectra [87]. The most prominent mea-
sure used in the VC literature is the mel-cepstrum distance

(mel-CD), also measured in dB

mel-CD(y, ŷ) = (10/ ln 10)
√
2(y − ŷ)>(y − ŷ) (19)

where y and ŷ are target and converted MCEP feature vec-
tors, respectively.

The mel-CD is suitable for evaluating preliminary exper-
iments, defining training criterions, and validation purposes,
but not for evaluating the final system regarding quality due
to the low correlation with human perception [237]. Other
objective speech quality assessment techniques exist [238].
These measures aim to have higher correlation with human
judgment. Recently, an automatic voice conversion evalua-
tion strategy was proposed, wherein both speech quality and
speaker similarity were automatically computed [239]. The
speaker similarity score was computed using a speaker verifi-
cation method. These scores were shown to have higher cor-
relation with subjective scores. However, optimizing map-
ping functions based on these criterions is more difficult, due
to their the complex mathematical formulation.

7.2. Subjective Evaluation
Unfortunately, objective evaluations do not necessarily cor-
respond to human judgments. Thus, in most studies, subjec-
tive evaluations are performed; during such evaluations hu-
man listeners asses the performance of the VC system. The
listeners should ideally perform their task in ideal listening
environments; however, ,statistical requirements often ne-
cessitate a large number of listeners. Therefore, listeners are
often hired that perform the task through a crowd-sourcing
website such as Amazon Mechanical Turk (AMT).

The mean opinion score (MOS) test is an evaluation us-
ing 5-scale grading. Both the speech quality and similarity
to the target voice can be evaluated. The grades are as
follows: 5=excellent, 4=good, 3=fair, 2=poor, 1=bad. The
project TC-STAR proposes a standard perceptual MOS test
as a measure of both quality and similarity [240].
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The comparative MOS (CMOS) can also be used to di-
rectly compare the speech quality of two VC techniques.
The listener is asked to choose the better sounding utter-
ance. The measure is computed as the percentage where
each techniques is selected over the other. The grading can
also be 5-scale as follows: 5=definitely better, 4=better,
3=same, 2=worse, 1=definitely worse. This would give a
good indication of any improvements. However, the abso-
lute quality score is not calculated, making it difficult to
judge the closeness to ideal quality (natural speech).

The ABX test is often used in comparing similarity be-
tween converted and target utterances. In this test, the
listeners hears a pair of utterances A and B, followed by
hearing a given utterance X, and have to decide is whether
X is closer to A or B. The A and B utterances are uttered
by source and target speakers but the ordering that the lis-
tener hears them is randomized. The measure is computed
as the percentage of correct assignment of X to the target
speaker. The main problem with interpreting ABX scores is
that the subjects do not have the option to answer that the
sentence X is not similar to neither A nor B [241]. For exam-
ple, given A=”mosquito”, B=”zebra”, X=”horse”, subjects
may be forced to equate B with X; however, B is still very
dissimilar from X.

The ABX test can compare two VC techniques directly
by setting X, A, and B to the target utterance, first VC, and
second VC. This measure is computed for each VC technique
as the percentage of the utterances for which that technique
has been chosen as closer to the target utterance. The MOS
and ABX scores of various VC techniques have been pub-
lished [241].

Another technique for testing similarity is to do use the
CMOS for same-different testing [42]. In this test, listeners
hear two stimuli A and B with different content, and were
then asked to indicate wether they thought that A and B
were spoken by the same, or by two different speakers, us-
ing a five-point scale comprised of +2 (definitely same), +1
(probably same), 0 (unsure), −1 (probably different), and
−2 (definitely different). One stimulus is the converted sam-
ple and the other is a reference speaker. Half of all stimuli
pairs are created with the reference speaker identical to the
target speaker of the conversion (the “same” condition); the
other half were created with the reference speaker being of
the same gender, but not identical to the target speaker of
the conversion (the “different” condition). There has to be
careful consideration in picking the proper speaker for the
different condition.

Finally, the Multiple Stimuli with Hidden Reference and
Anchor (MUSHRA) test has been proposed to evaluate the
speech quality of multiple stimuli. In this test, the subject is
presented with a reference stimulus and multiple choices of
test audio (stimuli), which they can listen to as many time
as they want. The subjects are asked to score the stimuli
according to a 5-scale score. This test is especially useful
if one wants to test multiple system outputs in regards to
speech quality.

As with all subjective testing, there is a lot of variability
in the responses and it is highly recommended to perform
proper significant testing on any subjective scores to show
the reliability of improvements over baseline approaches.
For crowd-sourcing experiments, it is best to incorporate
certain sanity checks to exclude listeners that are performing
below a minimum performance threshold, or inconsistently.
A possible implementation of these recommendations is to
include obviously good/bad stimuli in the experiment , and
to duplicate a small percentage of trials.

An extensive subjective evaluation was performed dur-
ing the 2016 VCC, with multiple submitted systems [242].
It was concluded that “there is still a lot of work to be done
in voice conversion, it is not a solved problem. Achieving
both high levels of naturalness and a high degree of simi-
larity to a target speaker –within one VC system– remains
a formidable task” [242]. The average quality MOS score
was about 3.2 for top submissions. The similarity average
score was around 70% correctly identified as target for top
submissions. Due to the high number of entries, techniques
to compare and visualize the high number of stimuli, such
as multidimensional scaling, were utilized [242, 243].

8. Applications

VT and VC techniques can be applied to solve a variety
of applications. We list some of these applications in this
section:

Transforming speaker identity: The typical application
of VT is to transform speaker identity from one
source speaker to a target speaker, which is referred
to as VC [244]. For example, a high-quality VC
system could be used by dubbing actors to assume
the original actor’s voice characteristics. VT meth-
ods can also be applied for singing voice conver-
sion [245, 246, 247, 248].

Transforming speaking type: VT can be applied to
transform the speaking type of a speaker. The goal
is to retain the speaker identity but to transform emo-
tion [249, 250, 251, 252], speaking style [253, 254],
speaker accent [255], and speaker character [256].
Prosodic aspects are considered a more prominent fac-
tor in perceiving emotion and accent, thus some stud-
ies focus on prosodic aspects [4, 257, 258, 259, 260,
250, 252, 261, 262].

Personalizing TTS systems: A major application of VC
is to personalize a TTS systems to new speakers, us-
ing limited amounts of training data from the desired
speaker (typically the end-user if the TTS is used as
an augmentative and alternative communications de-
vice) [263, 264]. Another option is to create a TTS
system with new emotions [4, 265, 266, 267, 268].

Speech-to-Speech translation: The goal of these sys-
tems is to translate speech spoken in one language
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to another language, while preserving speaker iden-
tity [269, 270]. These systems are usually a combina-
tion of ASR, followed by machine translation. Then,
the translated sentence is synthesized using a TTS sys-
tem in the destination language, followed by a cross-
language VC system [62, 240, 271, 70].

Biometric voice authentication systems: VC presents
a threat to speaker verification systems [272]. Some
studies have reported on the relation between the
two systems and the vulnerabilities that VC poses for
speaker verification, along with some solutions [273,
274, 275, 276].

Speaking- and Hearing-aid devices: VT systems can
potentially be used to help people with speech dis-
orders by synthesizing more intelligible or more typi-
cal speech [5, 277, 278, 279, 280, 281, 282, 283]. VT
is also applied in speaking-aid devices that use elec-
trolarynx devices [284, 285, 286]. Similar approaches
can be used to increase the intelligibility of speech
especially in noisy environments with application to
increasing the performance of future hearing-aid de-
vices [253, 287, 288]. Other applications are devices
that convert murmur to speech [289, 290, 278], or whis-
per to speech [291, 292].

Telecommunications: VT approaches have been used to
reconstruct wide-band speech from its narrowband
version [293]. This can enhance speech quality without
modifying existing communication networks. Spectral
conversion approaches have also been successfully used
for speech enhancement [294].

9. Challenges

Many unsolved problems exist in the area of VC. Some of
them have been identified in previous studies [244, 13, 237,
1, 241]. As concluded in the VC Challenge 2016, there is
still a significant performance gap between the current state-
of-the-art performance levels and the human user expecta-
tions [233]. There are a lot of similarities between compo-
nents of VC and statistical TTS systems, since both aim to
generate speech features and synthesizing waveforms [295].
Consequently, some of the challenges and issues are shared
in both systems.

Analysis/Synthesis issues: One major VC component
that limits the quality of the generated speech is the
analysis/synthesis part. STRAIGHT is a high-quality
vocoder, but compared to natural speech, there is a
still a quality gap [17]. Recently, new high-quality
vocoders were proposed, such as AHOCODER [37]
and VOCAINE [38], both of which have shown im-
provements in statistical TTS. Recently, several first
attempts for direct waveform modeling using neu-
ral networks for statistical parametric TTS were pro-
posed [296, 297, 298]. These efforts may be a first step

towards a new scheme for speech modeling/modifica-
tion; however, the situation in VC is different since we
have access to a valid source speaker utterance, which
potentially allows copying certain aspects of speech
without modifications.

Feature Interpolation issues: To represent spectral en-
velopes, various features are used, such as spectral
magnitude, all-pole representations (LSFs, LPCs), and
cepstral features. One major issue with these features
is that interpolating two spectral representations may
not result in spectral representations that are gener-
ated by the human vocal tract. For example, when
using cepstra, if we interpolate two different vowel re-
gions, the outcome would sound as if the two sections
are overlapping, and not as a single sound that lies per-
ceptually between the two initial vowels. This limita-
tion is one of the reasons for over-smoothing when mul-
tiple frames are averaged together. A spectral repre-
sentation that represents meaningful features are for-
mants locations and bandwidth. The two major prob-
lems of this representation is that formant extraction is
still an unsolved problem, especially in noisy environ-
ments, and the inability of formants alone to represent
finer spectral details.

One-to-many issues: The one-to-many problem in VC
happens when two very similar speech segments of the
source speaker have corresponding speech segments
in the target speaker that are not similar to each
other. As a result, the mapping function usually over-
smoothes the generated features in order to be similar
to both target speech segments. Some studies have
attempted to solve this problem [74, 75, 77].

Over-smoothing issues: In most VC approaches, the fea-
ture mapping is a result of averaging many parameters
which results in over-smoothed features. This phe-
nomenon is a symptom of the feature interpolation
issue and one-to-many issue. This effect reduces both
speech quality and speaker similarity. A lot of ap-
proaches such as GV have been proposed to increase
the variability of the spectrum. Approaches like dictio-
nary mapping and unit-selection don’t suffer as much
since they retain raw parameters and the feature ma-
nipulation is minimal; however, they typically require
a larger training corpus and might suffer from discon-
tinuous features and resulting audible discontinuities
in the speech waveform.

Prosodic mapping issues: For converting prosodic as-
pects of speech, various methods have been proposed.
However, most of them simply adjust some global
statistics, such as average and standard deviation. The
conversion is usually performed in the frame-level do-
main. As mentioned in the previous sections, these
naive modifications can not effectively convert supra-
segmental features. There are some challenges to mod-
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eling prosody for parametric VC. The main challenge
is the absence of certain high-level features during con-
version, which hugely affect human prosody. These
features might be linguistic features (such as infor-
mation about phonemes and syllables), or more ab-
stract features (such as sarcasm and emotion). For
TTS systems, textual information is available during
conversion, which facilitates predicting prosodic fea-
tures from more prosodically relevant representations
such as syllable-level or word-level information. Espe-
cially foot-level information modeling might be helpful
for conversion [299]. These types of data, extracted
from the input text, are not available to a stand-alone
VC system, but could be extracted using ASR systems
with some degree of error. The main challenge is to
transform pitch contours by considering more context
than one frame at a time, i. e. segmentally.

10. Future Directions

In the previous section, we presented several challenges that
current VC technology faces. In this section, we list some
future research directions.

Non-Parallel VC: Most of the studies in the literature
use parallel corpora. However, to make VC systems
more mainstream, building transformation systems
from non-parallel corpora is essential. The reason is
that average users are hesitant to record numerous
speech prompts with specific contents, which might
be laborious for some. Several attempts for doing non-
parallel VC is reported [6, 195].

Text-dependent VC: VC systems that utilize phonetic
information are another research area. One example is
to use phoneme identity before clustering the acoustic
space [300, 301]. Using phonetic information to iden-
tify classes using a CART model instead of spectral in-
formation has also been proposed [51]. These systems
could use the output of ASR to help the effectiveness
of VC. These systems would likely use a combination
of techniques from ASR, VC and parametric TTS.

Database size: An important research direction is captur-
ing the voice using very limited recordings. Some stud-
ies propose methods for dealing with limited amounts
of data [236, 89, 302, 303, 111, 186, 110, 207, 304].
Utilizing additional unsupervised data have been pro-
posed; for example, techniques that separate pho-
netic content and speaker identity are an elegant ap-
proach [111, 110, 195].

Modeling dynamics: Typically, most VC systems focus
on performing transformations frame-by-frame. One
approach to this consists of adding dynamic informa-
tion to the mapping features. Event-based approaches

seem to be a good representation since they decom-
pose a sequence into events and transitions, and these
can be individually modeled. However, detection of
event locations is a challenging task and requires more
research. Additionally, some models such as HMMs
and RNNs implicitly model the speech dynamics from
a sequence of local features. Typically, these models
have higher number of parameters compared to frame-
by-frame models. These sequence mapping approaches
seem to be a major future direction.

Prosody Modeling: Developing more complex prosody
models that can capture speaker’s intonation and seg-
mental duration in an effective way is an important re-
search direction. Most of the literature performs sim-
ple linear transformations of the pitch contour (typi-
cally in log domain) [217] and the speaking rate. De-
veloping more sophisticated prosody models would en-
able the capture of complex prosodic patterns and thus
enable more effective transformations.

Many-to-one conversion: In practice, most VC systems
can only convert speech from the source speaker that
they have been trained on. A more practical approach
is to have a system that converts speech from anybody
to the target speaker. Several attempts to accomplish
this have been studied [202].

Articulatory features: Most of the current literature
studies the VC problem from a perceptual standpoint.
However, it may be worthwhile to approach the prob-
lem from a speech production point of view. Sev-
eral attempts to model and synthesize articulatory
properties of the human vocal tract have been pro-
posed [305, 306]. These approaches have some limi-
tations, such as being speaker-dependent, or requir-
ing hard-to-collect data such as MRI 3D images, elec-
tromagnetic articulography, and X-rays. Overcoming
these limitations would open up an important set of
tools for articulatory conversion and synthesis.

Perceptual optimization: The optimizations that are
performed in statistical methods during learning
source-target feature mapping function typically op-
timize criterions that are not highly correlated with
human perception. An attempt at performing percep-
tual error optimization for DNN-based TTS has been
proposed [122]; similar approaches could be adopted
to VC.

Real-world situations: Most of the corpora used in the
literature are recorded in clean conditions. In real-
world situations, speech is often encountered in noisy
environments. Attempts to perform VC on these noisy
data would result in even more distorted synthesized
speech. Creating corpora for these situations and de-
veloping noise-robust systems are an essential step to
allowing VC systems to become mainstream.
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